Support

If you have a problem or need to report a bug please email : support@dsprobotics.com

There are 3 sections to this support area:

DOWNLOADS: access to product manuals, support files and drivers

HELP & INFORMATION: tutorials and example files for learning or finding pre-made modules for your projects

USER FORUMS: meet with other users and exchange ideas, you can also get help and assistance here

NEW REGISTRATIONS - please contact us if you wish to register on the forum

Users are reminded of the forum rules they sign up to which prohibits any activity that violates any laws including posting material covered by copyright

Tweaked One pole LPF

DSP related issues, mathematics, processing and techniques

Tweaked One pole LPF

Postby juha_tp » Thu Mar 28, 2019 6:12 pm

FYI, not long ago I got an idea of trying to speed up MZT/IIM based one pole LPF by using Taylor series to approximate exp() function. After some tryouts I found out that use of just degree 2 polynomial resulted approximation error which actually improved the resposne of the MZT/IIM filters when cut-off frequency was approaching Nyqvist. Not perfect filter but better ... and probably can be improved more but my math skills are not that good... .

So, as winked, coefficients are calculated this way (Matlab/Octave code):

Code: Select all
// fs - in Hz (tested only @  44100)
// fct - in µs, if Hz used then convert to µs with formula 1/(2*pi*fc)
x = 1.0/(fs*fct);
a0 = 1.0;
a1 = -(1 + x + 0.5 * x^2); // Taylor
b0 = a0 + a1;
b1 = 0.0;

a = [a0 a1];
b = [b0 b1];


Comparison against MZT, IIM and BLT: https://i.postimg.cc/zDPyPrRz/lpf-robo.png (cut-offs: 1k, 5k, 10k, 15k, 20k)

I also did run speed comparison against the original exp() based filter implementation and got about 20x speed up with this tweak (Ubuntu, g++, --ffast-math enabled).

Octave code for the linked plot image:

Code: Select all
% --------------------
% OCTAVE PACKAGES
% --------------------
pkg load signal
% --------------------

%clf

fs=44100;
fc=1000;
fct=1/(2*pi*fc);
fs2 = fs/2;
N=1; % order

% -----------------------------
% Analog model
% --------------------
w0 = 2*pi*fc;
Analogb = 1;
Analoga = [1 w0];
Analog = tf(Analogb, Analoga);
Analog = Analog/dcgain(Analog);

% --------------------
% MZT
% --------------------
p1 = exp(-1.0/(fs*(1/(2 * pi * fc))))
z1 = 0.0;                           
MZTa0 = 1.0;
MZTa1 = -p1;
MZTb0 = 1.0-p1;
MZTb1 = -z1;

MZTa = [MZTa0 MZTa1];
MZTb = [MZTb0 MZTb1];

MZT=tf(MZTb, MZTa, 1/fs);

% --------------------
% IIM
% --------------------

[IIMb,IIMa]=impinvar(Analogb,Analoga,fs);
IIM=tf(IIMb, IIMa, 1/fs);
IIM=IIM/dcgain(IIM);

% --------------------
% MZT approximated
% --------------------
x = 1.0/(fs*fct);
MZTa0 = 1.0;
MZTa1 = -(1 + x + 0.5 * x^2);
MZTb0 = MZTa0 + MZTa1;
MZTb1 = 0.0;

MZTa = [MZTa0 MZTa1];
MZTb = [MZTb0 MZTb1];

MZT2=tf(MZTb, MZTa, 1/fs);


% --------------------
% BLT
% --------------------
w0 = 2*pi*(fc/fs);
%BLTb0 =   sin(w0);
%BLTb1 =   sin(w0);
%BLTa0 =   cos(w0) + sin(w0) + 1.0;
%BLTa1 =   sin(w0) - cos(w0) - 1.0;
%
%BLTa = [BLTa0 BLTa1];
%BLTb = [BLTb0 BLTb1];
%
%BLT=tf(BLTb, BLTa, 1/fs);
%BLT=BLT/dcgain(BLT);

BLT = c2d(Analog, 1/fs, 'prewarp', w0);

% --------------------
% Plot
% --------------------

nf = logspace(0, 5, fs2);

figure(1);
% analog model
[mag, pha] = bode(Analog,2*pi*nf);
semilogx(nf, 20*log10(abs(mag)), 'color', 'g', 'linewidth', 2);
axis([10 fs2 -30 1]);
hold on;
%semilogx(nf, pha, 'color', 'g', 'linewidth', 2, 'linestyle', '--');

% BLT
[mag, pha] = bode(BLT,2*pi*nf);
semilogx(nf, 20*log10(abs(mag)), 'color', 'm', 'linewidth', 1.0, 'linestyle', '-');
%semilogx(nf, pha, 'color', 'm');

% MZT
[mag, pha] = bode(MZT,2*pi*nf);
semilogx(nf, 20*log10(abs(mag)), 'color', 'k', 'linewidth', 1.0, 'linestyle', '-');
%semilogx(nf, pha, 'color', 'k', 'linewidth', 1.0, 'linestyle', '--');

% IIM
[mag, pha] = bode(IIM,2*pi*nf);
semilogx(nf, 20*log10(abs(mag)), 'color', 'c', 'linewidth', 1.0, 'linestyle', '--');
%semilogx(nf, pha, 'color', 'c', 'linewidth', 1.0, 'linestyle', '--');

% MZT approximated
[mag, pha] = bode(MZT2,2*pi*nf);
semilogx(nf, 20*log10(abs(mag)), 'color', 'r', 'linewidth', 2.0, 'linestyle', '--');
%semilogx(nf, -pha, 'color', 'r', 'linewidth', 2.0, 'linestyle', '--');

grid on;

str=num2str(fs);
str2=num2str(fc);
str3=num2str(N);

str = sprintf("LPF (various TF), order:%s, fs=%s, fc=%s, ",str3, str, str2);
title(str);
legend('Analog', 'BLT', 'MZT', 'IIM', 'MZTapprox', 'location', 'southwest');
xlabel('Hz');ylabel('dB');

juha_tp
 
Posts: 60
Joined: Fri Nov 09, 2018 10:37 pm

Re: Tweaked One pole LPF

Postby wlangfor@uoguelph.ca » Fri Mar 29, 2019 9:15 pm

This is cool, I'll check it out when I have My computer. Thanks.
My youtube channel: DSPplug
My Websites: www.dspplug.com KVRaudio flowstone products
User avatar
wlangfor@uoguelph.ca
 
Posts: 912
Joined: Tue Apr 03, 2018 5:50 pm
Location: North Bay, Ontario, Canada

Re: Tweaked One pole LPF

Postby lalalandsynth » Wed Apr 03, 2019 12:06 am

Is it possible to design filters in matlab and get code that works in FS DSP/assembler?
User avatar
lalalandsynth
 
Posts: 600
Joined: Sat Oct 01, 2016 12:48 pm

Re: Tweaked One pole LPF

Postby juha_tp » Wed Apr 03, 2019 8:23 am

lalalandsynth wrote:Is it possible to design filters in matlab and get code that works in FS DSP/assembler?


Nope, if you plan to use Matlab build in functions for to design the filters. IIRC, Matlab can export to c/c++ but my quess is that most Matlab related functions/code uses header and library files by Mathworks (licencing).

Compiler explorer probably could help in bringing the C -code to FS Assembler ... haven't checked it but, here's an example based on my post above.
juha_tp
 
Posts: 60
Joined: Fri Nov 09, 2018 10:37 pm

Re: Tweaked One pole LPF

Postby lalalandsynth » Mon Apr 15, 2019 5:24 pm

Interesting ! Thanks
User avatar
lalalandsynth
 
Posts: 600
Joined: Sat Oct 01, 2016 12:48 pm


Return to DSP

Who is online

Users browsing this forum: No registered users and 39 guests